\Q -

1975) '
EDRS PRICE MF-$0.76 HC-$1.58 Plus°Postage . .
DESCRIPTORS *Computer Assisted Instruction; Computer Programs;

R
o .
Y - - ~o

DOCUMENT RESUME

ED 111 398 IR 002 454

AUTHOR Schuyler, James A. -

TITLE Hypertext +°'Tutor = Hypertutor. ‘

PUB DATE | Aug 75 = »
NOTE 17p.; Paper presented at the Association for the

Development of Computer-Based Instructional Systems
Summer Meeting (Portland, Maine, August 4, 5,

*Cost Effectiveness; *Programlng Languages; *Systems

Concepts; *Teaching Hethods ‘
IDENTIFIERS Hypertext; HYPERTUTOR; Northwestern University; PLATO

.IV; Program Sharing; TUTOR IV

5 14

ABSTRACT - ¢

The HYPERTUTOR lncorporates the ideas of a
"hypertext" and the TUTOR~IV programing language used on the PLATO-IV
systes. The HYPERTUTOR is a part of Northwestern University's
MULTI-TUTOR system and runs on a non-PLATO, non-dedicated CDC 6400
computer. It allows the transfer of courseware from PLATO to
non-PLATO systems. It has successfully been transferred to other CDC
6000-series and Cyber-70 computers. This paper outlines the ratlonale
for the creation of such a system, and gives the background of
MULTI-TUTOR, its systems structure, and its compatability problems
with PLATO's Tutor. Current MILTI-TUTOR sites are listed along with
an outline of the clearlnghouses for lessons now being established at
ﬁbrthwestern. .1 analysis of current cost factors of the MULTI- TUTOR
s&stem 1s included. (ARuthor).

2 2k ok ok ok ok ok ook ok ok ok e e ok e ke ok e e ok ok ok ke ok ok e ok ok e ok ok e ok e sk 3k sk 3k ok ok ok ok ok ok kiR 3k koK ook skok sk okok koK ok ko ok ok

* Documents acqulred by ERIC include many informal unpublished *
* pmaterials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. nevertheless, items of marginal *
* reproducibility are often encountered and this affects the quality =*
* of the microfiche and hardcopy reprqductlons ERIC makes available *
* via the ERIC Document Reproduction Service (EDRS). EDRS is not *
* responsible for the quality of the oklglnal document. Reproductlons *
* *
* *

supplied by EDRS are the best that can be made from the original.
************%;***y******************?********************************

1

pneh S

N

1, e . ‘) ‘ v
‘ . - .
) . . . N - . . .
| . ‘ U.S. DEPARTMENT OF HEALTN, : '
EDUCATION 8 WELFARE
NATIONAL INSTITUTE Of)
EDUCATION
THIS DOCUMENT MAS BEEN REPRO '
DUCED EXACTLY AS RECEIVED FROM ’
THE PERSON OR ORGANIZATION ORIGIN A
ATING IT POINTS OF VIEW OR O;‘INIONS
STATED DO NOT NECESSARILY REPRE.
SENT OFFICIAL NATIONAL INSTITUTE OF E»

EDUCATION POSITICN OR POLICY
HYPERTEXT + TUTOR = HYPERTUTOR
James A Schuyler, Northwestern University:

a

; ~
Abstract: The HYPERTUTOR incorporates the ideas of a "Hypertext"
(a word coined by Theodor H. Nelson) and the TUTOR-IV programming
language used on the PLATO-IV system. The HYPERTUIUR is a part
of Northwestern University's MULTI-TUTOR system and runs on a
non-PLATO, non-dedicated CDC 6400 computer. It has successfully

. been transferred to other CDC 6000-series and CYBER-70 computers.
This paper outllnes the rationale for creatlon of such a system,’
gives the background of MULTI-TUTOR, system structure, .compati-
bility problems with Plato'’s Tutor, lists current MULTI-TUTOR
sites, and outlines the clearinghouse for lessons now being es-
tablished at Northwestern. It concludes with an analysis of

_current operating costs on the MULTI-TUTOR system.

2

FD111398

Background

e

The MULTI-TUTOR, including the HYPER-TUTOR, really exists for a
. single reason -~ to make the transfer of Tutor-language courseware*
| from Plato to non-Plato systems p0551b1e (and vice versa). The
reasons for this desire to transfer courseware, and the many prob-
lems compliqating transfer, are the subject. of this paper.

There is really a single basic reason for transfer of C.A.I. course-
ware —- it takes so long' to produce C.A.I. instructional units that
the cost must be shared among many institutions and students to
make it worthwhile. The sharing can be done by creating gigantic
C.A.I. systems such as Plato} where 1000 students may be connected
to the computer at once, or it can be done by physically transport-
ing courseware to many different locations to be run (the TICCIT2
approach) .::

The MULTI-TUTOR (previously called HyperTutor) was created in res-
ponse to thiree specific needs:
a) We needed to share the cost of lesson development, as outlined
. above. The potential to transfer our lessons to Plato systems and 7
o _receive royalties, as well as the potent1a1 to 1mport Plato lessons)
"is still the overwhelming factor. ~ ' PN
1 b) People who, cannot afford the cost of extra equipment, terminals
and software to run an actual Plato system still would like to use]
the Tutor language, so that their programs will bk fairly compatible
with Plato systems in the future. Many installations have hundreds
of CRT terminals, and cannot afford to trade them on the comparatively
costly Plato terminals. as this would reduce the number of terminals o
available to students. In addition, even though the cost of the

&

* The term "courseware" includes computer programs ("software”) and
Q associated documentation for students. : ’

e

»
& “»
«

Plato terminal is é¥pected to decrease, it shows no signs of
doing so in the immediate future.\ MULTI-TUTOR provides some=
thing to do while we 're waiting.

c) Many programs. written in the Tutor language do not require
the full capabilities. of the Plato system or 1ts terminals. '
In the future, as well as the present, these programs should be’
run on inexpensive CRT terminals, rather than utilizing' the
costly Plato terminals.

There are some reasons for caution in discission of the transport
of Tutor programs. , .

a) Some programs require the communlcatlons prov;ded by Plato
in its 1000-terminal environment. Sueh programs ‘should not be
transported unless the target system can support these communi-
cations.* '

bj Some programs really make effectivé use of the plasma-panel
graphics as part of the teaching process (as opposed to the
"bells-and-whistles" use made of graphics in many Plato programs) .
These may be run on MULTI-TUTOR, but still require a Plato termi-
nal (which MULTI-TUTOR supports) .

c) Some 'programs require the- instant response Plato can give.
Brackett3 discusses this point, and claims that if a Plato
program does not “feel" the same on another system, it will lose
its educational effectiveness. , MULTI-TUTOR can run in this
way, but the operating system must give CAI top priority.

The MULTI-TUTOR/HyperTutor approach

-

MULTI-TUTOR provides most of the commands of the Tutor‘ﬁanguage,
plus an "editing" and lesson-creation tool ralled. the HyperTutor,
to users of Control Data 6000 and Cyher-70 computers, running
under standard Kronos or Scope operatlng systems.’

Two assembly-language programs serve as the base of the system:
a) A syntax scanner and translator (READIN) ‘which converts
Tutor programs, into Micro-Tutor, which can be interpreted during
interactions with students. (This is roughly the function of
Plato's condensor program.)
,b) An interpreter for the Micro-Tutor.language.

On top of this base stand Tutor Jessons written byucourseware
authors, and a_number of "system programs", all wrltten in the
Tutor language- .

a) The Hyper-Editor (Hyper-level), .

b) A more conventional text-editor, .

* MULTI-TUTOR does, in fact, support many communications tools.
in practice, local MULTI-TUTOR users may find that the operating
system or physical facilities may make them difficult to use.

¥

~%

-

i

But,

[

>
o g v

’ c) A sign-on program which determines the type of terminal a

student is using and sets operational parameters for MULTI-TUTOR,
d) All communications programs, and) '
e) An execution-error reporter and processor which gives feed-

back to courseware authors about student problems.

\

The MULTI-TUTOR was designed to provide a lesson-organizing structure
muach like Theodor H. Nelson's proposed Hypertext4. This structure
would ‘make it possible for students or teachers to browse ‘through
ex1sting "public" lessons on each computer system. Because the
Hypertext concept was combined with the Tutor language, the system
was originally called the HyperTutor. It now supports the opera- ////
tion of Hazeltine, A.D.D.S, Teletype-replacement terminals, Plato
and Tektronix 4023 (CR¥) terminals. It does not require dedication’ ' v
of any part of the computer, running as a regqular time-sharing job. Y
Lesson materials can be swapped directly from disk or from high-speed
extended core storage (ECS) as on Plato. Because of the flexibility /
of this system, it is now called the MULTI-TUTOR. /////
The MULTI-TUTOR is composed of three operational levels:
a) The HyperTutor, an interactive "editor" where the authors of
courseware manipulate paragraphs of text, answers, actions to ,be
taken contingent upon students' responses, objectives and flow-charts
for lessons. The terminal used for lnteractlon at this level is
normally a Plato terminal with touch-panel, because HyperTutor de-
pends heavily on graphics and quick interaction. The HyperTutor
produces Tutor commands to be used at the next’lower level.
b) Tutor, the high-level language, may be used directly by program-
mers, or may 51mp1y be used to process code produced at the.Hyper
level. Some authors prefer to create courseware initially in the
HyperTutor, then slip down the ladder to edit that material further
in the Tutor level. Experiments done here at Northwestern have shown
a reduction in lesson preparatlon time of approximately 25% when this ° °
approach. i1s used. ’)
c) The Micro-Tutor. Here the actual functions required to service the.
o student are represented in a Tutor-like (but more detailed) form.
This level of the system is the one we anticipate using to support other
"hard core" C.A.I. languages*in the future. All that is required to
add a new language to the system is the creation of a syntax scanner and
translator. Nobody programs at the micro-level; it is simply the repre-
sentation chosen for the concepts critical to all C.A.I. languages, .
and only serves to drive the 1nterpreter.

——

r

* "Hard core" C.A.I. is the term used to reference systems in which a
special-purpose language or equipment are used for C.A.I.

- . . History
The design and programming_ef MULTI-TUTOR began in late 1972, ’,

and although the system is perfectly operational, it is constant-

ly updated to provide compatibility with ghe ever~-changing Tutor
Jlanguage. During 1974, MULTI-TUTOR (under the name HyperTutor) s
was transferred to other universities for preliminarg tests. By

July, 1975, it had been shipped to seventeen sites, and was

known to be operatlonal at seven of these.

One major pitfall in the growth of C.A.I. systems has been the
distribution of systems without courseware to accompany them. ’
In September, 1975, when MULTI-TUTOR is officially released, it
will be accompanied by a courseware exchange service. In the
initial exchange will be lessons developed and tested at North~
western, in C.A.I., Pediatrics and Llngulstlcs. From this small
base of about fifty lessons, the exchange. will be expanded to
include lessons created on Plato as well as other MULTI~TUTOR
systems. .

. . . 3
Current MULTI-TUTOR development is concentrated on the develoﬁ?
ment of the HyperTutor program described in a. later section of

_ this paper.

Compatibility

!

MULTI-TUTOR Is not completely compatlble w1th Tutor iIn the sense
‘that it accepts the full Tutor language. There are several levels
of compatibility which MULTI-TUTOR supports: .
a) Any MULTI-TUTOR lesson should ‘run, unchanged except for char- ’
acter set translations and a few simple replacements done by a
Snobol program, on Plato. If it does not, the condition is not
intended. . -7 :
b) Plato lessons incorporating no 11ne-draw1ng or author-de- ’
signed characters, will run on MULTI—TUTOR s character-oriented
CRT terminals. In addition, many lessons which use graphics do
not use them in a Substantial, educational, way. These also can
be transferred at this level. These lessons may, also include
common-storage and dataséts.
c) Lessons incorporatinglgraphics, 1nc1ud1ng character sets,
Tt can be run on Plato terminals connected to the MULTI-TUTOR. ¢
d) on the Kronos operating system only, single keypresses can
be processed, allowing a much more fl x1p1e interaction with the
. student., The speed of this processing, ‘depends to a largé degree
upon local operating system varlables. f)
e) MULTI-TUTOR will not support the echoing of special charac-
ter sets to the student typist, and therefore 1s contraindicated
*® for language lessons requiring strange character sets. .Special
local systems w1th front-end computers may be able to support
such echoing, but Plato is a far better choice.

Courseware transfer, in both directions, depends upon simple
character-set related conversions. These are now performed by a
Snobol program at Northwestern.

»

10 v

. ¢

k]

©

Potential for Courseware Exchange
MULTI-TUTOR is now operating at’at Yeast seven“sites: .
Northwastern University, Evanston, IL
The ‘University of Texas, Austin, TX
The University of Colorado, Boulder, CO .
Mass. State College Computer Network, Boston, MA
McMaster University, .Hamilton, Ontario, Canada
COWO - University of Amsterdam, Amsterdam, Netherlands
Oregon State University, Corvallis, 'OR , ’ . ~

-

’

’

A number%of other institutions with substantial interest in C. A.I.
currently have MULTI-TUTOR tapes and are in some stage of 1mp1e—
mentation. Implementatlon at the sites known to be running has
taken at most a féw days, with most making successful 1mp1emen— -
tations 1n,1esq than a day. Several sites other than Northwestern
are known to be developing courseware -- the extent of these com-
mittments is not known. We, therefore, do not expect a great in-
flux of courseware' from MULTI-TUTOR sites for another year or two.
5
%
We are currently seeking courseware from Plato authors for the

exchange. Implementation of this courseware will procede cautiously
until we can ensure proper compatibility with Plato's Tutor, and
then we will release the coursewafe for other sites with Plato
terminals. '

Tne'MULTI-TUTOR courseware clearinghouse will perform several
functions, and is patterned after the CONDUITS model:

a) Courseware to be transferred between Plato and MULTI—TUTOR .
will be unblocked and some character conversions performed so that
it can be easily read on MULTI-TUTOR systems. MULTI-TUTOR course-
ware for Plato use will also be blocked and converted.

b) Yechnical validation will be performed at Northwestern, using
.terminals of a type suitable for the courseware in'question. All
programs must run without technical flaws to pass this stage.

c) The clearinghouse will then suggest approprlate people or
organizations for review of the content of the lesson. Certifica~
tion in the ¢« CONDUIT organization 1s‘an approprlate model -- disci-
pline committees in recognized academic areas review -the course-

+ -ware's content and strategy. e *

d) Courseware which has "been passed will be cataloqued and re-

leased to MULTI-TUTOR users.

Experience has shown that it may take a year or more for courseware
to reach the catalog stage.1 !

Royalties or single-sale payments will be made to the authors or.
owners of courseware used on MULTI-PUT?R systems. MULTI-TUTOR
" reports all lesson usage scrupulously.

\
o

¢ Documentation
- . a . ' , y .
C.A.I. courseware includes not only the cdomputer programs, but asso-
ciated documentation aiméd at teacher, student or programmer. .Using
the preliminary documentation guidelines prepared by CONDUIT,Gand
input from C.A.I. experts participating in a C.A.I. task-force for
CONDUIT, we have prepared preliminary check-lists for C.A.I. docu-
mentation. These are divided into three parts: teacher, student
and brogrammer (or technical).

Teacher documentation:

This documentation is expected to give the pros ctive adoptor an
overview of the material, followed by all detai§i necessary to run
(but “not necessarily change or fix "bugs" in) it. It is suggested
that"this documentation include:

Overall information: A statement of the availability of the
materials (time required for shipment, cost, procedures,
location of the source, copyrights or other restrictions,
and limitations for liability of error). A list of other
centers using the material wou'ld also be useful, and a
statement of ‘what local support is included.

An abstract: The abstract includes thée descriptive title of 0
" the package, authors' names, original source, names and lo--
cations of subsequent .modifiers, a summary of the substantive’
content, statement of educational objectives, specification
of the computer's unique instructional role, background re-
quirements for instructors -and students, level ¢f student,
references used in the construction of the program, a
statement of supplementary materials needed (text, film, etc),
instructional strategy and logic (é.g. drill, tutorial, linear,
inquiry, etc.), and citations of published reviews.

Educational documentation: It is desirable to include the theo-
retical foundations, formulae and techniques of a substantive
nature, relation between program and course materials, recom-
mendations and examples for use in a standard curriculum,
descriptions, of how computer activities have been integrated
into the .classroom using this package, a statement of expected
time allocation for students, faculty and computer equipment,
suggested methods for evaluating student performance, reports
on actual use of the materials in class, and sources of infor-
mation on formal evaluation (e.g. published results).

“

Student documentation:‘ . .

*

Documentation for the stud%nt is expected to give an overview of the
material, plus specific instructions on how to use it.-

Abstract: It is recommended that the student be provided with the
full abstract as outlined above.' In any event, s/he should be
provided with: Descriptive title, summary of substantive content,
statement of educational objectives, background requirements for
students, a statement of supplemeﬁfapy materials needed (text,
film, etc). ‘

"/

nagd

¢ S ') &

Bducational documentation: Tt is recommended that the student be -
provided with at least the theoretical foundations, formulae-
and techniques of a substantive nature, and relation between
program and course materials.]

Technical documentation: Tf the student is expected to make any
modifications to the program, s/he should be provided with full
technical' documentation as described bellow for the programmer.
Otherwise, it should include: a rough explanaton of the
program’'s logical organization, descriptions of sample input
and output (if not adequately explained interactively, or if

- the .student must prepare input before the session), test
data and expected results, a full list of terms and available
options and how to exerC1se them, and an explanation of any
rogram-generated messages and how to correct associated faults.

‘ Local documentation: Instructions on how to use the local computer,
exdamples showing use of the local computer, a setup example of,

. how to access the program under consideration, notations on any

/ significant differences between the local version and the uni-

, vercal model of the program, and information on typical: run
times and costs. It is also recommended that this information
contain names and phone numbers for 1) thé teacher, 2) personnel
at the computer site who are familiar with the program, and
~3) consultants who can help with computer problems.

N

Pro(rammer documentation-'
¥ :

The programmer is the person who 1Zit1ally gets the package of les~ ~
sons going cn the local computer, and is responsible for local techni-
cal verification before the progrars are used by students. Thus, the,
full packet of information for teacher, student and programmer should
be available .to him. However, specific techn1ca1 information is

also needed as fbllows. \

o P

Technical documenuatlon. An explanation of the program's 1oglca1
organization, an explanation of the functlons of disciete modules
within the program, a well- commented program listing (usually on
tape), sample input for all options, sample interactions, llstlngs \
of output. generated by sample data, full description of output,
suggested test problems, full list of terms and options, an ex- .

' planation of program-generated messages and the conditions which
cause them, a glossary of variable names and their gyses, list of !
counters and their uses, auxllllary storage areas, supporting
programs, files and common storage areas. If files or datasets
are used, include a description of,file organization, indices,
security procedures and passwords. A good system flowchart
.should always be .included.

1 [

The programmer ﬁill often be the person to write the local documenta-
tion for the students, and for this reason should be familiar with the
operating system and potential student problems. . .

4 ' . 3
-. . 3 . - 2
‘ | oo ‘e

v o
| |

'\

\

\ {Cost of MULTI ~-TUTOR
\ ! '
We have conducted some snort tests to determine how much it is costing
us to create lessons using the MULTI-TUTOR, ang the factors we have

<

included are' lis;ed belo&.
\ . cost component) time component
v C.R.T. termT‘nal (52,000)| . ' : o]
e lasts 5 years, used 8 hours per 2,
' " | ~day, 5 daysiper week, 50 weeks
per year. (10,000 hours) D
Repair bills.per term1na1
Est. $300 per year (2, 000 hrs/year) s

Modems:last 5 years, as;for term'l.
Initial cost $300 | s

. Phone: dlal—qp local line
. Est. $15.00 per month * s .09 "

i -

$.20 per stud. hr.

<15 per stud. hr.

!

..'

*03

-

Cost of C.A.I. operating system

sl, 000 per year to malnteln,)
. dlstrlbuled over 10,000 etudent- *' »
’ contact-hours" at Northwestern) s .10 v

Computer t1m°- actual average . >

. at Northwestern 81.75 "
i ==— —

Researchlng, planning, consulting,
discussing with others @$10/hour

{$200 per l-hr 1esson} 20 hours per
l-hour lesson

.« Coding, editing, entering ipto the ‘ » :
. computer @$5.00/hour {$159 " ' }30 hours per
a S . 3 " \ 1-hour lesson
Preliminéry testing, review!and ' d
recoding , @$10/hour i\ {$100 " }10 hours\per
\

- 1-hour lesson
‘(Costs of updating the lesson from : . E

; X ! .] !
time to time are not included.) H fbﬂhls
§ . ‘
Assuming that an .average l-hdur : .
lesson is used by 500 students, ¥
over a single year'period ‘ '

$.90 rer stud. hr.

Additjonal p0551b1e costs: : N
Superviszon of C.A.I. center! s ? .

Connect-chargé: varies a lot, is. >
er _hour at Northwestern

TOTAL COST PER STUDENT HOUR $4.22

These costs are typical of those encountered at Northwestern with the
MULTI-TUTOR. Certain items will vary widely in the cost equation, primarily
the cost of terminals, phone, cost of the operating system, humber of
student-hours a lesson produces.and the connect charge.)

-

-
<

For example, a change in connect-time charges can be directly added to
the cost equation. -Or a purchase of a Plato terminal rather than the

inexpénsive CRT we use could be calculated to raise the cost to a total’ ©

, ofag5.02 per hour.

® ¥ N
§ v Conclusion

Y . — s
- . b b

\\
\ -~ ’

.

The MULTI-TUTOR prov1des a moderately-prlced C.A.I. system for people
who have some Cyber 70 computer power to spare. It does not require
addrtional equipment, either computer or termlnals. It provides most

of "the facllitles of the Tutor language and a great degree of compati-‘ *

bllity with Plato's JJutor. It should, therefore, allow relatively
easyx transfer of lessons to and from Plato systems.

4 '
y

/ .

PRJ

L]

‘ ' £

(1) Numerous reports available from Computer-based Education Research
Laboratory, University of Illinois, Urbana, IL» 61801

Best reference on the Tutor language is: ,
Sherwood, Bruce Arne, "The Tutor Language", 1974 ' .

(2) Bunderson, C. V. "The Ticgit Project: Design .Strategy for Educa-
tional Innovation”, Institute for Computer Uses in Education,
Technical Report ¥ 4, Brigham Young Unlver51tg, Provo, Utah 1973

(3) Brackett, Johri (Principal- Investigator) "A TUTOR M;n;computer
System", SofTech, 460 Totten Pond Road, Waltham, Mass. 1975

(4) Nelson, Theodor H., "No More Teachers' Dirty LOOks","ln Computer
Dec;s;ons, September, 1970 (pp.16%23)

(5) See. numerous papers in "Computing and the Decision Makers",' EDUCOM,
Interuniversity Communications Council, Prlnceton, NJ: 1974

(6) "ﬁrellmlnary Documentation Guidelines", working-paper used within
CONDUIT (A conso%tlum of regional. networks at Oregon State Uni-
Ver51ty, North Carolina Educ. Computing Serv;ce, Dartmouth’ College

" and the Universities qf Iowa and Texas (Austin)).

Notes : ¢
Jotes

.
N . ? : .

-~ %

- o

P

L

»

~ '
s " ‘ A HYPER—Level §ystem for che ‘ ‘
. Creatlon of Computer-Alded—Instructlon'Courseware

2 » o [\

!. \

Background and Problem Statement :

.
“ ,
'?- o . - -
ot -t s . 4

Plato's Tutor 1anguage 1 wall be.w;dely knoqn in—a few years, and. much
courseware. will be f1n1shed, hav;ng gone through debugging, validation
with ‘classes and ¢ert1f1catlon by peer-review boards such as those’
created by CONDYIT 2 ., rutor certainly appears dest;ned to. become the
"Fprtran"’of Computer—Alded -Instruction. .. o

. - .. :) -7
Tutor is among those languages for C.A.I. used on,a systém where lessons
(or programs) are actually programmed, as, opposeé to systems whére the -
c0mputer generates questiong from g gdatabase, or Ticcit-like ‘systems
where authors of courseware enter informatton on codlng forms, or in
an 1n:eract1ve fashion different from the _programming format.of Plato.
Though Tutor programmers may write code wh*ch allows the student wide =~ o=
lattitude in lesson choice, and .nay .even write code which mlmlcs the
behavior of other C.A.I. systems, it is difficult to do so ‘because “of
the necessity of, learnlng more and more Tutor commands to do it. Most
courseware authors take-the straight and narrow path, which may tend
to steer them in thé direction of "programmed instruction". The -~

approach outllned 1 this paper would .cut authoring time for complex “

strategies by 25 to 50% for both experlences and inexperienced authors.

Author;gg time for C.A.I. 1essons:

» ! . . l‘ ' .
Experiments carried out at Northwestern have shown that lesson-writing for
inexperienced authoxs can take fro# 30 to 120 hours of author time for

each student-hour of material produced as a final product. Average tlmes

for a group of six inexperienced authors are shown below:

- . %
Authoring time to produce one.student hour . -~
_ . hours |percent
N ’ Planning, consulting, .
looking at, other 15 30% .
lessohs) S
Coding, typing and e
editing 25 50%
'| - N » - - -
* Testing, revision . 10 20% °)
’ . 50, hrs=100%)

C4 - Y 1

Notice that gven though the editing system used is quite sophlstlcated,
and allows immediate interactive testing of a lesson, the major amount

-~ 3

of time 1j,spent just entering code and getting it to'work -

.
, t
.

A Hyper-level Language for C.A.I.:

. P
Current C.A.T. apthdrs genefally work with high-level languaées, such as
Plato's Tutor. These allow trapid pqura-mlng of interactive units when
an author is an experienced programmer. Tutor also allows inexperienced
authors to program relatively simple interactive strategies, but its
full repertoire of commands is beyond the reach of anyone without six
months or more of programming experience. Tutor contains over 200
different "commands", but a subset of .perhaps 15 i1s enough for the)
beginner. ; . . y

. \ 0
In the MULTI—TUTOR system, the Hyper-edltor (or HJperTutor) 1s now belng
added above the level,of the Tutor (hlgh—level) language-

; .
) “ Hypér-editor |...., {The~HyperTutor, or
g - ' graphic interaction *
— - level
‘ . . TUTOR. ves oss High-level
. . \ - " ‘\ .,
i o . M}cro-Tutor . ~ (The actual language
or elemental d A interpreted by - . -
L +{ ,MULTI-TUTOR . ¢ .
] " ’/
At the Hypér'level, a courseware author Interatts w1th the computer us;ng
graphics and text. The Hyper-edltor accepts or e11c1ts courseware ob-
jectives and structureh and creates a map of the 1esson to be written
durlng the interaction. Though the Hyper-edltor will not be comp%eted .
until the end of 1975, we have prov1ded a short scenario describing the _
intended interaction. -y -
. . . - ! : .) * [§
. Y A Scenario
The Hyper-editor, using a Plato terminal equipped with a touch-panel, lets _
the courseware author specify a flow~chart for the genéral flow of the -
* new, lesson. | c . “
. ! » 2 . . . "f‘ .
\) - ’ .o -‘\\
+ * \. L
v‘ - \/ Y oA A
:j Q : 8. LY
w O ¢ ! .

~ - - -

This map,.along with the ob]ectlvég specified for each box, is.then

" avallable to the students ‘who are browsing through MULTI-TUTOR's list of

pbubljc lessons,. 1ett1ng them "f11p the pages" of the lesson before de-
c141ngwwhethe£;to explore further. .

3 * A}

a®

i

The lesson-creation process then continues with the author proceeding
to ‘more and more detail in the flowchart. S/he "enters" aNbox on the
rowchart by touch1ng-1t -~ HyperTutor then requests individual frames
("Unlts" in the terminology, of Tutor) of the lesson.

sttt ® o
Author ."\touches" a box
Ato specify .its frames.s,
- ‘w

The specification of each frame may include a teachlng-strategy, as well

as a short description of the contept of the frame. It is anticipated that

a few (perhaps half a dozen) strategies.for 1n31v1dua1 units would be prov1ded
with the first Hyper—edltor, to determine just how much faster courseware

can be created -this way In&gddition, authors may design their own frames
for use as prototypes. A

v

&a

o

‘The Hyper-editor finally takes these specifications and creates actual

code in the Tutor language. There is*no barrlef to crqatlng code in other T

"hard core" C.A.I. languages as well, if this seems reasonable. The code -
thus created can then be immediatély tested on the system the author is

using, and, once debugged, can be shlpped to other systems for use by

other teachers and students. It is essential that the system used by

authors of courseware. contain both the Hyper-editor and the ability to exe-

wcute, code for, students, but it is not necessary that the eventual target

(student) sys tem contain the Hyper—editor. . ‘

1

Preliminary tests at Northwestern: <

In an actual test case, this strategy for lesson creation has been partially
tested by the author of this paper. A teaching strategy much like that to be
used on Ticcit 3 was developed, and is described by, the dlagram at the top
of the next page. The student may progress from one such frame to another
under program control, or the studeht may pick frames. (or short sequences of
frames) from an index. The method of connecting the frames is determined by
the courseware author during the interaction with the Hyper-editor. During
the testzng of this strategy, the reqular systém editor was used to copy a
"paradigm"iframe as many times as was necessary to create the finished les=

son. Specific 1nfbrmatzon for each frame was filled in.as each frame was. .
completed. The lesson thus created contalned 18 sequences of 5 frames each

% t . ’

’ ' \P" . 1 ?

&

b

» b3
‘z takes student to
practice... §
explanations é practice questions
‘ : hard wragr \ ’ hard ¥
,* Mm v eeeccscesssessene key pve s cvecetocnny i
Student picks .**° medium -) . medium oo
one or more cessseccea evsese 14 " BACK" T B \
levels of s easy ~key - easy \ .
explanation... - : e ‘
. Pre551ng BACK key 4
- . . . 4F3 ‘takes “student to o
/‘ explanations...

& . . *

The creation of these 90 frames, each with three levels of explanation and
practice gquestions, took 35 hours when coded Jompletely by hand, but only

15 hours when the editor was used to copy and modify the frames. This was

a reduction of over 50 % in coding and editing time. Testing and-debuggin
time was not strictly measured, but in the case of the hand coded lesson,
there were many programming errors, some not detected until students started
using the lesson during the academic term, and in the case of the Hyper-coded
lesson, the only errors were typing mlstakes in the text to be displayed in
each frame... theré were no errors in the "logical flow within frames. | a

There arc no estimates cirrently made on how much time the getting of ob- ’
jectives and creation of flow-charts via the hyper-editor would add or sub-
tract' from lesson-creation time. . S ®
A Full-scale Test Qg,the Hyper-system: s)
. et g
A Hyper-editor will soon be campleted, capable of creating lessons using combi-
nations of a few test strategies. Lessons will be produced in the Tutor
language, and the ‘Hyper-system will be written entirely in Tutor, so that it
may be run.as a major part of the MULII-TUTOR.. .

Lesson~-creation time using this exper1menta1 Hyper-editor will be measured
by hav1ng both .experienced and inexperienced author create lesson utilizing
these strategies. Eagch author will create the lesson tuuce, ohce "by hand"
and once by Hyper-editor. For Inexperienced authors, the time necessary

to learn how to program and how to operate the Hyper-editor will be measured
separately, followed by repeated trials as the authors gain experience. '

Advantagég_g{,this scheme: . - <

There are numerous advantages to the creation of courseware using the Hyper-
editor. First, automatic documentation of lessons is achieved as the
Hyper-system records objectives and flow—charts while the courseware 1is
being created. Second, the system can suggest high-interaction of proven
strategles to an author, and will in fact keep track of an author's prefer-
ences. Third, ‘the strategies are already debugged and the autlor of the
courseware need only debug the lesson's content and overall strategy. And
finally, data to be used for evaluation will be "automatically" collected by
the code the Hyper-editor creates, and may be used by the author to review or

Iy :;'- ‘J‘L ‘ -) ‘ 4 ¢ \

F

~ .

%

restructure the lesson at a later date. 1y
Summary:

This three-layered C.A.I. system wull be a revolutlonary means of helping
authors create quality courseware in the future. The editing and coding
process alone accounts for 50 % of lesson-creaélon time in C.A.I., and
prellminary tests have shown at 50 % reductlon in that time alone using
the methods explalned ‘herein. Full 1mp1ementaélon of this system will
show us what decrease in lesson-creation time may be expected overall,

and perhaps what type of author (experlenced or 1nexpe;1enced) w111 see
the greater improvement. |

Notes: E '

?— Py -

(1) Sherwood, Bruce Arne, "The Tutor Language", Computer-based Education
Research LaboratOry, Un;vers;tg of Illinois, Urbana, IL; 1974

(2)- Numerous papers 1n omputlng and the Dec151on Makers", EDUCOM,
Interuniversity Cbmmunlcatlons Council, Princeton, NJ , 1974

+ (3) Bunderson, C. V. "The Ticcit Project: Design Strategy for Educatiohal
Jnnovation", Technical Report ¥ 4, Institute for Computer, Uses . L

In Education, Brzgham Young University, Provo, Utah , 1973 ’

’ s »

N

A Micro-Tutor ﬁg make C.A.I. Courseware Transfer Feasible

The companion papers to this' pieve describe a three—leyered Computer-
Aided Instruction (C.A.I.) system called the MULTI-TUTOR. The "hyper"
level, highest of the three, allows painless creatlon of C.A.I. courseware
by inexperienced programmers. Below that level, ‘the. high-level language
of the computer system is used (Tutor is used by MULTI-TUTOR currently).
The hyper-level system interacts with an author, producing printed docu-
mentation and Tutor code as a result. This paper describes the operation
5f the lower, elemental level of this system, which is charged with the
execution of the various high-level languages which will be acceptable
to- the MULTI-TUTOR. ” OV
In the best of all possible worlds, a C.A.I. author would wish to be -
able to transfer courseware to any C.A.I. system, Yegardless of the lan-
guage in which it is coded. THhis is clearly impossible today, given the
state of"the C.A.I. art -- every new C.A.I. system designer invents.a new
C.A.I. language which is visualized as somehow "better" than all previous
languages. What is really needed is a C A.I. system which will adapt to
the syntax of many languages, thus glVlng the ability to run practically
any C.A.I. lesson on a single computer system. The following diagram

is a complte sketch of the MULTI-TUTOR:

’ Hyper-level [......."graphic" interaction
systénm . — J
- . TUTOR , *
. (high-level)f*+--.. "hard core" language
~ translator 000000.0000"000’“'"

Micro-level |Elemental level

In the Plato design, the brldge between high-level and what's actually
used when students are on-line i$ a program called the "condensor" --

it takes Tutor code, scans 1t for syntax errors, creates various tables
which will be needed durlng execution and condenses most Tutor commands
into concise, easily interpretable codes. When a lesson is needed for a
student, it is the "condensed" version whiqh is actually processed.

In the MULTI-TUTOR, the bridge between high-level and elemental-level

is another program -- this time a translator which changes Tutor or
another language into an elemental, very basic but totally comprehensive
micro-C.A.TI. 1anguage, which can then be interpreted in order to service
students. Because the translator is drlven by the syntax of the high-level
language, it will be able to accept any C.A.I. language for which a
translation table can be developed. (Part of this project will involve
generatlng the rules' for Tutor. Planit, Courseéwriter and other 1anguages

in.which substantaal course/are now exists.) oot -
3 1 .

\ : .

s
L

2

oy

"

R

¥

2

Some specific points:

1

It is not.anticipatedthat authors will actually be writing lessons

using the micro-tutor language -- instead, they will continue

to operate in their own favorite high or hyper-level languages, and

the elemental language will make this possible. 1

. Lesson transfer is not conducted in the mlcro-leve} language itself,
though one might use it as a descriptive language in which éther
C.A.I. programs could be described. The power of the system is
that it can accept lessons wrltten in other language.

a3

One is tempted to think of using Tutor itself as an elemental

. language, since it has all of the facilities the other languages

have, but this will probably not be wise, since there are so many

actions Tutor does not make explicit (such as repeating the question

when the student gives a wrong answer). However, there is no P

barrier to starting with the functions Tutor embodies, since it is

the most sophisticated of the languages which will be translated ..
by the MULTI-TUTOR.

Properly implemented, the MULTI-TUTOR would even allow authors to

create and write courseware in their own private languages, simply

by providing rules which could be used to translate into the : .
micro-tutor langvage. R .

Some preliminary work has shown that the functions needed at the
mi¢ro level can be divided into about ten groups. - -
1l) Calculations,) T ”
2) Answer-checking, : A
3) Branching, !
4) Special keys and _functions,
5) Datasets, »
6) Paging (units, frames) .
7) Labelling of units or commands,
8) Displays,)
9) Waiting for input,
10) Processing (manipulating) responses as characters.

These groups of functions will be explored further in a subsequent
publication. .)

F’a

Summary: . . ’ £

. -

{he Micro-Tutor is looked to es a courseware-traﬁsfer—facilitator.

It will ‘allow MULTI-TUTOR to accept several "hard core" C.A.I. !
languages at some future time, mapping each of them into an elemental "
representation which is actually interpreted by the MULTI—TUTOR.

In this way, several hlgh-level languages might be used on a single
computer system, or authors might develop their own 1 u es for
personal use. Work done ,to date has revealed some bro categories
into which commands. in C. A I. languages fall, and actual micro-tutor
representations of these will be brought to light in a future publi- N
cation. ' -

¢ . L4

